If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+6x^2=84
We move all terms to the left:
6x+6x^2-(84)=0
a = 6; b = 6; c = -84;
Δ = b2-4ac
Δ = 62-4·6·(-84)
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{57}}{2*6}=\frac{-6-6\sqrt{57}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{57}}{2*6}=\frac{-6+6\sqrt{57}}{12} $
| -1+5x=44 | | 4m+1/5-m+1/3=m-1/2 | | -0,5x^2+2x-2=2 | | 8y(y+2)=1 | | -9x+2=25 | | (0,5x^2)+2x-2=2 | | 0,5x^2+2x-2=2 | | 0,5x^2-2x+2=2 | | 0,5x²+2x-2=2 | | 2+7x=3+6x | | 42=7(x+50 | | 12x-7=120 | | 8x-2=52 | | -411+x+(-48)=25 | | 11x-1=40 | | 35=5(x+90 | | 5x+2x=25+5 | | 10(2x-8)=-88x | | X+(x+12)=124 | | 11x+2=60 | | 55x+9=559 | | 6x2-4x+10=0 | | 5(3b-13)=45 | | 5x+12=5-8x | | 9+(y+2)=22 | | 1/3x+6=21/6 | | 4(3+5x)=16+56-4(2x-1) | | 7x^2+78x+144=0 | | 3s^2+18s+20=0 | | 4-(3x-5)=6-(2x-17) | | 2(3x+1)-4x=16x= | | 2(3x+1)-4x=16x=¨ |